PHYSICAL REVIEW E

VOLUME 48, NUMBER 35

RAPID COMMUNICATIONS

NOVEMBER 1993

Fast O(IN) box-counting algorithm for estimating dimensions

T. C. A. Molteno
Physics Department, Otago University, Dunedin, New Zealand*
(Received 21 July 1993)

A successive-partitioning algorithm that performs box counting from a time series with compu-
tation time and storage both of order N is presented. This enables fast evaluation of generalized

dimensions on small computers.

PACS number(s): 02.70.—c, 05.45.4+b

I. INTRODUCTION

One method of characterizing the complex structure of
a chaotic trajectory is to estimate the dimension of the
corresponding strange attractor [1]. Algorithms for esti-
mating dimension abound; the algorithm of Grassberger
for estimating the correlation dimension [2] is compu-
tationally very efficient, requiring storage of O(N) and
computation time O(N)+O(D) for N data points and D
computed distances. Box-counting estimation of dimen-
sion is popular, conceptually very simple [3], and allows
the spectrum of generalized dimensions D, [4] to be esti-
mated from a single computation. To date the best box-
counting algorithms for a time series of N data points
require an execution time of O(N log(/N)) and storage of
O(N). I present in this paper a successive-partitioning
algorithm which performs box counting from a time se-
ries with computation time and storage both of O(N).

Generalized dimensions of a set approximated by N
points embedded in d-dimensional space may be esti-
mated by box counting from [5]

N(e) pa
lim { U iy 082z B }
Nooco | 1

— 1
q €0 In p

Dy = (1)

The purpose of the box-counting algorithm is to calcu-
late N (e€), the number of boxes of edge length € needed

n;(€)

to cover the set, and P; = , the occupation proba-
bility of the ith box where n;(€) is the population of the
ith box. Dy is called the capacity dimension, D; the in-
formation dimension, and D, the correlation dimension.
The capacity dimension Dy, for example, is calculated by
plotting log N (€) versus log(e) and determining the slope.
This involves evaluating N (€) for many different values
of €, preferably spaced logarithmically ranging from the
size of attractor to the smallest useful box size.

The most straightforward box-counting algorithm
for N d-dimensional data points declares a large d-
dimensional array and scans the time series, incrementing
the appropriate element of the array. This is executed in
O(N) time, but sadly the storage required for the array
is proportional to €~¢ and this rapidly becomes unman-
ageable for accurate dimension estimation (small €) and
d > 2. Several recent papers [6—9] explore methods of cir-
cumventing this storage problem using fast O (N log(V))
sorting algorithms [10].

1063-651X/93/48(5)/3263(4)/$06.00 48

II. SORTING-BASED ALGORITHMS

The evaluation of generalized dimensions has been
facilitated enormously by the use of fast sorting box-
counting algorithms [6,8,7]. The key idea is to take
the coordinates of each point of a set embedded in d-
dimensional space, rescale them to the interval [0,2% — 1],
and express them in binary form. The set is to be cov-
ered by a grid of d-dimensional boxes with edge length 2™
(0 < m < k). The box to which each point belongs can
be found by checking the most significant m bits of each
coordinate of that point. To find the number of boxes
needed to cover the attractor, the least significant k — m
bits of each coordinate are masked and the points sorted
in lexicographical order. Then one looks through the
sorted list to find the number of distinct values of masked
points. This algorithm takes order N log(/N) time using
fast sorting procedures (Quicksort or Heapsort [11]). Hou
et al. [6] improve this algorithm by introducing a new or-
dering which eliminates resorting in order to count each
box size. The memory allocation required for these algo-
rithms is O(dN) and so they can be used with very fine
grids.

III. SUCCESSIVE-PARTITIONING ALGORITHM

The present work uses a different approach. It involves
the repeated application of a simple partitioning proce-
dure to the set, eventually dividing it into a large number
of subsets, each covered by a small box. Take a box (in a
d-dimensional space) containing all the points in the set.
If this box is divided evenly into 2¢ boxes of equal size,
then these smaller boxes each have a set of points con-
tained within them. This process is then applied recur-
sively; each of the 2¢ boxes is subdivided as the original
box, creating another 22¢ box, each with its attendant
set of points. Some of these boxes are not important to
this calculation because they are empty, no points of the
set fall inside them [see Fig. 1(a)]; these empty boxes are
not partitioned any further. If this procedure is repeated
m times, the original box will be divided into a grid of
24 boxes [see Figs. 1(b) and 1(c)]. If at each stage
of this process the empty boxes are removed from the
calculation, then no more than 2¢ — 1 empty boxes will
be stored at any stage. Furthermore if a record is kept

R3263 ©1993 The American Physical Society

RAPID COMMUNICATIONS

R3264

FIG. 1. The successive partitioning of a 10*-point approx-
imation to the Hénon attractor. (a) After two partitions
(¢ = 272), the attractor is approximated by 11 nonempty
boxes (black squares) which will be passed on to the successive
stages. (b) € = 2% N(e) = 74. (c) e = 278, N(e) = 2211.
Note that some of the boxes are larger than others; these con-
tained one point at a previous stage and were passed over in
successive stages.

T. C. A. MOLTENO 48

of the number of boxes, as this process continues, then
this will give N (e€) for logarithmically spaced values of ¢,
{N(2”1), N(272),N(273),... ,N(Z'm)}, as required to
estimate the limit in Eq. (1).

Implementation of the successive-partitioning algo-
rithm revolves around the procedure for partitioning a
single box. This procedure is applied recursively to the
nonempty sub-boxes until a halting criterion is satisfied
(see Sec. IV). Boxes are stored as records, each con-
taining the corner closest to the origin, the edge size, a
pointer to the data held in the box, the population, and
an array of pointers pointing to the sub-boxes which are
created during the partitioning process. The procedure
for partitioning a single box divides naturally into three
steps. The first is to check the population of the box and
calculate the edge size of the new sub-boxes. If the box
under consideration only has one point within it, then
further partitioning is of no use and the procedure halts.
Otherwise the next step is to scan the time series associ-
ated with the box to be partitioned and allocate points
to the corresponding sub-boxes. This second stage is
where the most significant optimizations are found, as
this is the section of the code executed most often—once
for each element of the time series. The time series is
stored as integers and the binary representation of these
integers is used to generate an index into the array of
sub-boxes. This index is generated by bit shifting and
masking instructions which execute very quickly. The
contents of the sub-boxes are specified as lists of pointers
into the time series using the same system as Grassberger
[2]. The final step is to place a null pointer at the end of
the contents list of each sub-box.

This single box partitioning procedure takes O(M)
time where M is the population of the box. Since the
sum of the box populations at any stage is NV, any stage
in the partitioning process takes a total time of O(N).
This means that the whole process of box counting to a
grid of say 20 by 21° is O(IV), as it requires the applica-
tion of ten O(IN) processes.

IV. HALTING CONSIDERATIONS

When applying the successive-partitioning algorithm
to a strange set it is important to stop computation be-
fore the box size becomes too small; otherwise N(¢) — N
and the dimension approaches zero, i.e., the partitioning
algorithm ought to be halted before the boxes cease to
be a good approximation to the covering of the attrac-
tor. The point at which this happens is indicated by
a deviation from the expected scaling behavior for very
small box sizes. For the Hénon attractor, this devia-
tion appears to be related to the average box population
k= N—Isfl (see Fig. 2). The average box population, k, is
a very convenient measure of the quality of the approxi-
mation because the successive-partitioning procedure can
be automatically halted when & falls below a chosen value
ko; a good choice appears to be kg = 10.

If the partitioning algorithm is continued until the av-
erage population falls below some specific value kg, then
the computation time for a set embedded into d dimen-

RAPID COMMUNICATIONS

48 FAST O(N) BOX-COUNTING ALGORITHM FOR ESTIMATING . .. R3265
0.3 If the probability measure is not uniform, then the
e d=2N=15 computation time is shorter, as not every partitioning
o d=2N=16 will involve all N data points—some will lie in boxes
g 021§ ® (=3N=15 containing a single point and are not to be partitioned
= % 0 d=3 N=16 further. This is still an improvement over the O(NN log V)
3 ® d=4N=I5 Heapsort-based sorting algorithm especially for higher di-
8 o017 B O d=4N=16 mensional sets [Heapsort is used, as the worst case per-
pe formance of Quicksort is O(N?)).
0.0 HE® e p O V. DYNAMIC RANGE OF BOX COUNTING

0 20 40 60 80 100
Average Box Population

FIG. 2. The fractional deviation from expected scaling be-
havior caused by approximating the Hénon attractor with a
finite set of points is inversely related to the average box popu-
lation. These data are from 2'° and 2'® point approximations
embedded into 2, 3, and 4 dimensions. The fractional devia-

tion is approximated by 1 — ;}’8 where N(e) is the number
920

point approximation to the covering.

of boxes in a

sions will no longer be simply O(dN) but will be O(ldN),
where [is the number of partitionings that have taken
place. If the probability measure is uniform over the set,
then the population of all boxes at each stage is uniform.
The number of boxes then scales as

N(e) ~ e Po = (271)=Do = 2100,

If N(e) is greater than % (our halting criterion) then
the number of partitionings, [, is the first integer greater

than D%, log, % and is bounded above by

1

<1+ D010g2 e

Thus the algorithm takes computation time bounded
above by O(dN(1 + Diologz(N/k:o))). Table I shows
a benchmark for the estimation of dimension from a
set of randomly generated points using the successive-
partitioning scheme. If [> 1 then the time taken is
approximately O(b‘%N log,(IN/ko)); for random vectors
where Dy = d for all embedding dimensions the time
is independent of embedding dimension. The time per
partitioning shows a dependance on the embedding di-
mension as expected.

TABLE 1. Benchmark for the behavior of the
successive-partitioning algorithm with different embedding di-
mensions on a DecStation 3100 computer. The times are for
the successive partitioning of 2'® points generated at random
and embedded into d dimensions. ! is the number of parti-
tionings required for the average box population to fall below
10—at which point the procedure halted.

dl t (s) | l| %

1 15.9 15 1.06
2 12.9 8 1.61
3 10.1 5 2.02
4 10.4 4 2.60
5 9.0 3 3.00
6 14.0 3 4.67

For generalized dimensions estimated using box-
counting methods, the maximum possible dimension
dmax, 18 given by the expression

_ logN

dmax =

—loge’

If we add the constraint that the average population is
not to fall below some value k, then this expression de-
pends on the probability measure over the attractor. If
the probability measure is uniform, i.e., P; = —1'57 , then
the maximum generalized dimension is given by

_ log (%)
T —loge’

dmax
This should be compared with other dimension estima-
tion techniques, notably the Grassberger algorithm [2],
which takes O(N) time (for ¢ > 0) and has twice the
dynamic range [12]. The algorithm of Grassberger be-
comes less efficient when ¢ <« 0 as the number of dis-
tances computed approaches N2, the computation time
scales as O(N?), and the dynamic range per unit com-
putation time is similar to that of an O(IN) box-counting
algorithm.

VI. CONCLUSIONS

The fact that this successive partitioning algorithm
takes a computation time of O(NN) does not make it a
better choice than an O(NN log(NN)) algorithm. It does

TABLE II. Benchmark for box counting of an N point ap-
proximation to the Hénon attractor. Tio is the time taken
to partition to a 210 x 210 grid while Tio¢ is the time taken
to partition until the average box population is less than 10;
the Grid column is the smallest grid to which the successive
partitioning algorithm is counted. The column THou is the
time taken for the sorting based algorithm of Hou [6]. Both
algorithms were implemented in C, compiled and executed on
a DecStation 3100 computer. All times are in seconds and do
not include the time required to read in and scale the data.

N 1 TlO | T',ot] Gl‘ld l THou
216 2.6 2.6 1024 19.1
217 4.9 6.0 2048 40.9
218 9.6 11.3 4096 86.6
219 18.9 25.2 8192 192.0
220 37.7 61.5 16384 451.1

RAPID COMMUNICATIONS

R3266

mean that there will be some N, above which succes-
sive partitioning is faster. To determine this value, the
successive partitioning algorithm is compared with the
sorting based algorithm of Hou [6] (see Table II) on the
Hénon attractor. The successive-partitioning algorithm
is 7-10 times faster than sorting approaches to box count-
ing on small data sets (N ~ 2%), and for larger data
sets the relative improvement is more dramatic as the
computation time is O(NV), as opposed to O(N log(N)).
Furthermore, the process is automatically halted when
the average box population falls below a critical value;
the dimension can then be estimated automatically us-
ing a least squares linear fit, although convergence is still
not guaranteed [13]. Further performance improvements

T. C. A. MOLTENO 48

are achievable by implementing this algorithm in parallel.
This is easily done because the problem of partitioning a
single box creates several smaller versions of the original
problem, each of which can be passed onto another pro-
cessor. Source codes (in C or PASCAL) for the algorithm
described in this article are available from the author.

ACKNOWLEDGMENTS

I am indebted to Dr. Xinjun Hou for providing me
with a copy of the source code for his algorithm and to
Dr. Nick Tufillaro for many useful comments.

* Internet: tim@newton.otago.ac.nz

[1] T. Halsey et al., Phys. Rev. A 33, 1141 (1986).

[2] P. Grassberger, Phys. Lett. A 148, 63 (1990).

(3] E. Ott, Chaos in Dynamical Systems (Cambridge Uni-
versity Press, Cambridge, 1993).

4] P. Grassberger, Phys. Lett. A 97, 227 (1983).

5] P. Grassberger, Phys. Lett. A 97, 224 (1983).

6] X.-J. Hou, R. Gilmore, G. Mindlin, and H. Solari, Phys.
Lett. A 151, 43 (1990).

[7] L. Liebovitch and T. Toth, Phys. Lett. A 141, 386 (1989).

(8] A. Block, W. von Bloh, and H. Schnellnhuber, Phys. Rev.
A 42, 1869 (1990).

[9] F. Ling and G. Schmidt, J. Comput. Phys. 99, 196
(1992).

[10] L. Meisel, M. Johnson, and P. Cote, Phys. Rev. A 45,
6989 (1992); 45, 6996 (1992), present an algorithm with
computation time essentially independent of N and stor-
age O(e~?). Their algorithm is designed for data from
imaging devices and requires the points to be preparti-
tioned into boxes of size € [an O(NN) process if the data
are initially in a time series].

[11] W. Press, B. Flannery, S. Teukolsky, and W. Vetter-
ling, Numerical Recipes: the Art of Scientific Computing
(Cambridge University Press, Cambridge, 1986).

[12] J.-P. Eckmann and D. Ruelle, Phys. D 56, 185 (1992).

[13] H. Greenside, A. Wolf, J. Swift, and T. Pignataro, Phys.
Rev. A 25, 3543 (1982).

